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Exercise

Embed K6 and K7 into a torus.
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2-cell embeddings of graphs

Definition

A 2-cell embedding of a graph G into a surface Σ is such an embedding,
so that after you remove the graph, the resulting surface will be a disjoint
union of discs.

Theorem

Suppose graph G is 2-cell embedded into a sphere with g handles. Then

V − E + F = 2 − 2g ,

where V is the number of vertices, E is the number of edges and F is the
number of faces.
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Theorem

For any graph G there exists a number g so that G can be drawn on a
sphere with g handles.

Definition

Define γ(G ) — minimal number g , so that G can be embedded into a
sphere of genus g .

So γ(K5) = γ(K3,3) = 1, γ(K8) ≥ 2, γ(tree)−?
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Theorem

We have γ(Kn) ≥ (n−3)(n−4)
12 .

More generally, for polyhedral graphs, γ(G ) ≥ 1 − V
2 + E

6 .

Follows from Euler formula and F ≤ 2
3E .

Corollary: γ(K8) ≥ 2.
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Euler characteristic

Theorem

Suppose graph G is 2-cell embedded into a sphere with g handles. Then

V − E + F = 2 − 2g ,

where V is the number of vertices, E is the number of edges and F is the
number of faces.

Notice: For a given g , any 2-cell decomposition of sphere with g
handles has the same number V − E + F .

Notice: 2-cell decomposition makes sense for any surface!

Definition

The number V − E + F is called Euler characteristic.

So far we know that it is correctly defined for spheres with handles.
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Theorem

The Euler characteristic is correctly defined for any surface.

Any polygon can be triangulated.

Euler characteristic stays the same.

Euler characteristic is invariant under barycentric subdivision
(refinement).

Euler characteristic is invariant under coarsening.
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Coarsening

Definition

A map of a surface S is a partition of S into properly attached polygons.
A coarsening of a triangulation T of S is a map of S in which each
polygon is the union of 2-simplices from T .

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T1 and T2. We want to find a map M,
which is coarsening of some refinement of T1 and is approximating T2.

This would finish the proof.

Exercise: compute Euler characteristic of RP2,K 2,T 2,S2.
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Attaching a Möbius strip

Attaching a handle:

Attaching a Möbius band:
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Lemma about attaching

Lemma

Sphere with one handle and one Möbius band is homeomorphic to a
sphere with 3 Möbius bands.

Proof:
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Question:How does χ(Σ) change when attaching a handle? When
attaching a Möbius strip?
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